

Direct influence of solar spectral irradiance on the high-latitude surface climate

Xianwen Jing, Xianglei Huang, Xiuhong Chen

The University of Michigan, Dept. of Climate and Space Sciences & Engineering

Dong L. Wu

NASA/GSFC

Peter Pilewskie, Odele Coddington, Erik Richard

CU-Boulder, LASP

CERES 2021 Spring STM May 12, 2021

Acknowledgements: NASA TSIS-1 mission and NCAR Supercomputing Facilities

Jing, X. et al., <u>Direct influence of solar spectral irradiance on the high-latitude surface</u> <u>climate</u>, Journal of Climate, 34(10), 4145–4158, https://doi.org/10.1175/JCLI-D-20-0743.1, 2021.

Question to be addressed:

Assuming that two sets of SSIs have identical TSI but different partitions between visible and near-IR SSI, then, when they are used in the climate model simulations separately, will the simulated climate be the same or statistically different?

Different partitions: CMIP6 default vs. TSIS-1 observations

Starting Points

- Sun-climate connection matters
- Both TSI and SSI matters: the
 - TSI: "bottom-up" mechanism
 - SSI: "top-down" mechanism for UV SSI
 - UV→ozone →strato. radiative heating →temperature gradient → strato. circulation →STE →tropo circulation →surface climate
 - Little discussion about VIS and near-IR
 - Partly limited by the past observations
- CMIP6 solar forcing data set (1850-2300; Matthes et al, GMD, 2017)
 - Used by all modeling centers

TSIS-1 SSI measurements

- Successor of SORCE SIM
 - TSIS-1 SSI covers 0.2 to 2.4 μm
- Improved performance for visible and near-IR SSI
 - 0.25% radiometric uncertainty (10x better than before)

TSIS-1 SIM (from lasp.colorado.edu)

CMIP6 Solar forcing dataset

	Mean (Wm ⁻²)	Daily standard deviation (Wm ⁻²)
TSI	1360.9	0.42 (0.031%)
UV	85.8	0.13 (0.15%)
Visbile	655.2	<mark>0.22</mark> (0.034%)
Near-IR	613.6	0.10 (0.017%)

CMIP6 SSI: 1978-2014 on RRTMG_SW bands

- The difference is orders of magnitude lager than the temporal variations of SSI in CMIP6
- First-order question: how such differences between visible and near-IR can affect the simulated climate?
- Making two SSI datasets:
 - CESM2 SSI: 1978-2014 CMIP6 SSI scaled to TSIS-1 TSI by a factor of 1.00003
 - TSIS-1 SSI:
 - Within 0.2-2.4um, time-averaged TSIS-1 observed SSI
 - Outside, CMIP6 SSI but scaled to make the identical TSI as TSIS-1 observation

Why does VIS-NIR partition matter?

Sea ice vs. open water: VERY different reflections for VIS vs. NIR H_2O : much more absorption in the near-IR than in the visible

CESM2 annual-mean surface albedo

CESM-2 numerical experiments

- Slab-ocean run at present-day conditions
- Four-member ensemble runs
 - One ensemble with CESM2 SSI (control)
 - The other with TSIS-1 SSI (perturbation)
 Identical TSI/Different VIS-NIR SSI
 TSIS-1 SSI has more in VIS and less in NIR than the CESM2 SSI
- 20-year simulations and last 10 years used for analysis
- 5-day diagnostic runs for 12 months: direct atmospheric response before radiative feedbacks kick in

Surface SW Flux (net positive downward)

TSIS-1 has more SSI in visible than CESM2

Vertical shades: sea ice changes are statistically significant

Zonal-mean climatology difference

Atmosphere temperature differences

TPW, CWP, and cloud fraction changes

Feedback analysis (TSIS-1 – CESM2)

All-sky Feedback (Wm ⁻² /K)		
Planck	-3.01	
Lapse-rate	0.49	
water vapor LW	0.87	
water vapor SW	0.28	
Surface albedo	0.42	
Cloud LW	-0.61	
Cloud SW	0.70	

Conclusions

- A discrepancies between CMIP6 and TSIS-1 SSI in the visible and near-IR: as large as 4 Wm⁻² in a given RRTMG-SW band with opposite signs between VIS and NIR
 - ±1Wm⁻²TOA forcing.
- Even with the identical TSI, SSI partition between the visible and near-IR matters for the climate simulation
 - Disparity between visible and near-IR absorption by highlatitude surface (and atmosphere too)
- Spectral TOA forcing matters, not just the broadband TOA forcing
 - Ice spectral albedo feedback
- The merit of split SW: visible and near-IR reflected flux

THANK YOU!

Jing, X. et al., <u>Direct influence of solar spectral irradiance on the high-latitude surface climate</u>, Journal of Climate, 34(10), 4145–4158, https://doi.org/10.1175/JCLI-D-20-0743.1, 2021.

CESM spectral interval: 1, 3, 5, 7, 10, 30, 50 nm

TSIS spectral interval: 0.04~9 nm